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Abstract 

Numerical methods are very significant as it provides approximate solutions to initial value 

problems (IVPs) in ordinary differential equations (ODEs) where analytical methods fail. This 

research work considers the implementation of four widely-used numerical methods: Euler’s 

Method, Runge-Kutta Fourth-Order Method, Heun’s Method, and Milne’s Predictor-Corrector 

Method, using MATLAB, a powerful tool for technical computing. This work aims to serve as a 

practical guide for students and researchers, illustrating the seamless integration of theoretical 

concepts with computational techniques. It provides a structured framework that can be used for 

any initial value problems (IVPs) in ordinary differential equations (ODEs). Using a single 

example problem, we demonstrate the step-by-step MATLAB programming of each method, 

emphasizing computational efficiency, accuracy and error analysis. This research underscores 

MATLAB’s capacity to simplify complex numerical computations and offers recommendations for 

future enhancements. By bridging theoretical foundations and practical applications, this work 

contributes to the broader understanding and accessibility of numerical methods in scientific 

computing. 

Keywords: MATLAB; Euler’s Method; Runge-Kutta method; Heun’s Method; Milne’s Method 

 

 

 

 

about:blank
mailto:egbuhuzorup@fuotuoke.edu.ng
about:blank


 

 

 

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version 

 

 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 12 

1. INTRODUCTION 

MATLAB is a high-performance, multipurpose language that is widely used in technical 

computing. It offers an integrated environment for computation, visualization, and programming 

(MathWorks, 2024). It is a vital tool for data analysis, graphical illustration creation, and 

mathematical problem solving due to its strong capabilities (Moler, (2020) and Bouchaib & 

Abdelkhalak (2018)). MATLAB originated from the idea of “MATrix LABoratory” and its main 

feature is its matrix-based programming language, which makes it easier to represent 

computational mathematics naturally (Gander & Hřebíček, 2018). 

The MATLAB software package offers an efficient platform for examining the design and 

implementation of numerical algorithms as well as for understanding programming ideas (Higham 

& Higham, 2017). Its applications cover a wide range of scientific and engineering fields, 

including signal processing, solving differential equations and optimization problems. MATLAB's 

relevance in numerical calculations has been highlighted in recent researches, which have used it 

to teach numerical methods in academic contexts (Ali & Khan, 2021), build hybrid algorithms 

(Chen & Wang, 2022) and simulate complicated systems (Gupta & Rana, 2023). Additionally, 

MATLAB's vast libraries and toolboxes make it easier to apply sophisticated approaches, making 

it an indispensable tool for both practitioners and scholars (Abbas & Zhang, (2023) and Lin & 

Chou, (2023)). By leveraging its computing capacity and intuitive user interface, MATLAB 

remains a fundamental tool for theoretical exploration and practical problem-solving in numerical 

computations (Smith & Brown, (2021), Chapra & Canale, (2010), and Jones et al (2022)).  

This research work examines Euler’s Method, Runge-Kutta Method, Heun’s Method, and Milne’s 

Method, provides a comprehensive comparison of their underlying algorithms, accuracy, and 

practical applicability. By integrating theoretical insights with MATLAB-based implementations, 

this research work aims to explore how MATLAB can be used to implement these advanced 

numerical methods, with a focus on solving real-world problems across a range of applications. 

2. ANALYSIS OF METHODS 

Here, we discuss the theoretical aspect of the methods under study, develop the algorithms and 

write the MATLAB programming codes using a single problem for the different methods. 

2.1 Euler’s Method   

Euler’s method is one of the simplest and earliest numerical techniques for solving ODEs. It 

approximates the solution by moving the solution forward in discrete steps, using the tangent (the 

derivative) at the present position to estimate the next value. The method is first-order accurate 

that is, the error decreases linearly with the step size. Despite its low computational cost, Euler’s 

method can be unstable and lacks precision for stiff equations or large step sizes. It is still widely 

used for initial computations since it is straightforward and easy to implement, its limitations not 

withstanding (Williams & Zhang, 2023). 

Given the initial value problem of the first order differential equations of the form: 
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𝑦′ = 𝑓(𝑥, 𝑦), 𝑥 ∈ (𝑎, 𝑏), 𝑦(𝑥0) = 𝑦0                                                                                       (1) 

The Euler’s method computes the subsequent value 𝑦𝑛+1 as follows: 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛)                                                                                                         (2)                                                                                          

where ℎ is the selected step size (Kumar, 2023). 

2.1.1 Euler’s Method Algorithm 

1. Start 

2. Define the differential equation 𝑓(𝑥, 𝑦) 

3. Set the step size h, the interval of computation [𝑥0, 𝑥𝑛], and the initial condition 𝑦(𝑥0) =
𝑦0 

4. Compute the number of steps 𝑁 =
𝑥𝑛−𝑥0

ℎ
 

5. Initialize arrays 𝑥 and 𝑦: 

𝑥: Create equally spaced points from 𝑥0 to 𝑥𝑛 with step size ℎ. 

            𝑦: Initialize all values to zero and set  𝑦(0) = 𝑦0 

6. Iterate for 𝑖 = 0 to 𝑁 − 1:  

Calculate the next value of y using Euler’s formula: 

𝑦(𝑖 + 1) = 𝑦(𝑖) + ℎ. 𝑓(𝑥(𝑖), 𝑦(𝑖)) 

7. Compute the exact solution 𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) and calculate the error at each step: 

𝑒𝑟𝑟𝑜𝑟(𝑖) = |𝑦𝑒𝑥𝑎𝑐𝑡(𝑖) − y(i)| 

8. Display the results in a tabular form 

9. Stop 

 

2.2 Runge-Kutta Methods   

The Runge-Kutta family of methods is a set of iterative techniques used solving ODEs with higher 

accuracy than Euler’s method. The most popular of them is the fourth-order Runge-Kutta method 

(RK4). It computes the solution by evaluating the derivative at four distinct points within each step 

and combines them to estimate the subsequent value. The RK4 method is widely known for its 

optimal balance between computational effort and accuracy. Given that it provides fourth-order 

accuracy and is particularly resilient when handling a broad variety of ODEs, it is well-suited for 

problems with variable stiffness and non-linearity (Otto & Denier, 2005). 

For a given IVP, the RK4 method advances one step from (𝑥𝑛, 𝑦𝑛) to (𝑥𝑛+1, 𝑦𝑛+1) using the 

formula: 
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𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)                                                                                      (3) 

where the terms 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are intermediate slope estimates calculated as follows: 

𝑘1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛), 𝑘2 = ℎ𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1), 𝑘3 = ℎ𝑓 (𝑥𝑛 +

ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2), 𝑘4 = ℎ𝑓(𝑥𝑛 +

ℎ, 𝑦𝑛 + ℎ𝑘3) 

2.2.1 Runge-Kutta Fourth-Order Method Algorithm   

1. Start 

2. Define the differential equation 𝑓(𝑥, 𝑦) 

3. Set the step size h, the interval of computation [𝑥0, 𝑥𝑛], and the initial condition 𝑦(𝑥0) =
𝑦0 

4. Compute the number of steps 𝑁 =
𝑥𝑛−𝑥0

ℎ
 

5. Initialize arrays 𝑥 and 𝑦: 

𝑥: Create equally spaced points from 𝑥0 to 𝑥𝑛 with step size ℎ. 

           𝑦: Initialize all values to zero and set  𝑦(0) = 𝑦0 

6. Iterate for 𝑖 = 0 to 𝑁 − 1:  

     For each 𝑥(𝑖), perform the following steps: 

a. Compute 𝑘1using the differential equation 𝑘1 = ℎ . 𝑓(𝑥(𝑖), 𝑦(𝑖)) = ℎ (𝑥(𝑖) + 𝑦(𝑖)) 

b. Compute 𝑘2 using the midpoint approximation: 

 𝑘2 = ℎ . 𝑓 (𝑥(𝑖) +
ℎ

2
, 𝑦(𝑖) +

𝑘1

2
) = ℎ (𝑥(𝑖) +

ℎ

2
+ 𝑦(𝑖) +

𝑘1

2
) 

c. Compute  𝑘3 similarly to 𝑘2, but using the updated values. 

 𝑘3 = ℎ . 𝑓 (𝑥(𝑖) +
ℎ

2
, 𝑦(𝑖) +

𝑘2

2
) = ℎ (𝑥(𝑖) +

ℎ

2
+ 𝑦(𝑖) +

𝑘2

2
) 

d. Compute 𝑘4 using the final point 𝑥(𝑖) + ℎ 

𝑘4 = ℎ . 𝑓(𝑥(𝑖) + ℎ, 𝑦(𝑖) +  𝑘3) = ℎ (𝑥(𝑖) + ℎ + 𝑦(𝑖) + 𝑘3) 

e. Update 𝑦(𝑖 + 1) using the weighted sum of 𝑘1, 𝑘2, 𝑘3, 𝑘4 

𝑦(𝑖 + 1) = 𝑦(𝑖) +
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6
 

7. Compute the exact solution 𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) and calculate the error at each step: 

𝑒𝑟𝑟𝑜𝑟 = |𝑦𝑒𝑥𝑎𝑐𝑡 − y| 

8. Display the results in a tabular form 

9. Stop 

2.3 Heun’s Method   
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Heun’s method, also known as the improved Euler’s method, is a second-order numerical method 

that improves upon the accuracy of Euler’s method. By averaging the slopes at the beginning and 

end of the interval, Heun’s method corrects the initial prediction that was calculated using Euler's 

approach. This correction step yields a more accurate approximation of the solution compared to 

Euler's method. Heun’s method strikes a good balance between simplicity and accuracy, thus 

making it a popular choice when moderate accuracy is required without the computational cost of 

higher-order methods (Gupta et al, 2022). 

Heun’s Method is computed using the following steps:  

i. The Predictor Step: This gives an initial estimate of the solution at the next point.  

 𝑦𝑛+1
(𝑝)

= 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛)                                                                                                           (4a)                       

ii. The Corrector Step: This averages the slopes within the interval to improve the prediction. 

Because Heun's method requires averaging the slopes, it is often referred to as a modified Euler 

method and falls under the predictor-corrector category.  

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
[𝑓(𝑥𝑛, 𝑦𝑛) + 𝑓(𝑥𝑛+1, 𝑦𝑛+1

(𝑝)
)]                                                                             (4b)     

2.3.1 Heun’s Method Algorithm 

1. Start 

2. Define the differential equation 𝑓(𝑥, 𝑦) 

3. Set the step size h, the interval of computation [𝑥0, 𝑥𝑛], and the initial condition 𝑦(𝑥0) =
𝑦0 

4. Compute the number of steps 𝑁 =
𝑥𝑛−𝑥0

ℎ
 

5. Initialize arrays 𝑥 and 𝑦: 

𝑥: Create equally spaced points from 𝑥0 to 𝑥𝑛 with step size ℎ. 

           𝑦: Initialize all values to zero and set  𝑦(0) = 𝑦0 

6.  For each 𝑥(𝑖), perform the following steps: 

      a. Predictor Step: Use Euler’s method to predict 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 at the next step: 

      𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡= 𝑦(𝑖) + ℎ . 𝑓(𝑥(𝑖), 𝑦(𝑖)) = 𝑦(𝑖) + ℎ (𝑥(𝑖) + 𝑦(𝑖)) 

      b. Corrector Step: Use the predicted value to update with Heun’s method. 

     𝑦(𝑖 + 1) = 𝑦(𝑖) +
ℎ

2
 [𝑓(𝑥(𝑖), 𝑦(𝑖)) + 𝑓(𝑥(𝑖 + 1), 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡)] 

7. Compute the exact solution 𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) and calculate the error at each step: 

𝑒𝑟𝑟𝑜𝑟 = |𝑦𝑒𝑥𝑎𝑐𝑡 − y| 
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8. Display the results in a tabular form 

9. Stop 

2.4 Milne’s Predictor-Corrector Method 

Milne’s method is a higher-order predictor-corrector technique for solving ODEs. It is based on 

using previously computed values of the solution to predict future values. The predictor step uses 

an explicit formula to estimate the solution at the next time step, while the corrector step improves 

this estimate by taking into account data from previous steps. Milne’s method is a third-order 

method, which requires fewer function evaluations than Runge-Kutta and offers higher accuracy 

than Euler and Heun. According to Sharma & Patel, (2023), this method is particularly useful for 

solving stiff equations and is widely used in computational science and engineering for modeling 

complex systems where higher precision is essential. 

Given the values of 𝑦 at previous points𝑥𝑛−3, 𝑥𝑛−2, 𝑥𝑛−1, 𝑥𝑛, the solution at the next point 𝑦𝑛+1 is 

predicted using the following formula: 

𝑦𝑛+1
(𝑝)

= 𝑦𝑛−3 +
4ℎ

3
(2𝑓𝑛−2 − 𝑓𝑛−1 + 2𝑓𝑛)                                                                               (5) 

where 𝑓𝑖 = 𝑓(𝑥, 𝑦) represents the derivative (slope) at point 𝑥𝑖. After obtaining the predicted value 

𝑦𝑛+1
(𝑝)

, Milne’s method applies a corrector to improve the accuracy of the prediction. The corrector 

uses the trapezoidal rule and the known values of the function to adjust the predicted value: 

𝑦𝑛+1 = 𝑦𝑛−1 +
ℎ

3
(𝑓𝑛−1 + 𝑓𝑛−1

(𝑝)
)                                                                                                  (6) 

This step refines the predicted value by averaging the slopes at points 𝑥𝑛−1 and 𝑥𝑛+1
(𝑝)

 

2.4.1 Milne’s Predictor-Corrector Method Algorithm 

1. Start 

2. Define the differential equation 𝑓(𝑥, 𝑦) 

3. Set the step size h, the interval of computation [𝑥0, 𝑥𝑛], and the initial condition 𝑦(𝑥0) =
𝑦0 

4. Compute the number of steps 𝑁 =
𝑥𝑛−𝑥0

ℎ
 

5. Initialize arrays 𝑥 and 𝑦: 

𝑥: Create equally spaced points from 𝑥0 to 𝑥𝑛 with step size ℎ. 

           𝑦: Initialize all values to zero and set  𝑦(0) = 𝑦0 

6. Generate the initial values using RK4 method to compute the first three values of y.  

For each i from 1 to 3: 

a. Compute 𝑘1, 𝑘2, 𝑘3, 𝑘4 using the differential equation. 
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b. Update 𝑦(𝑖 + 1) using the weighted average of the coefficients:  

𝑦(𝑖 + 1) = 𝑦(𝑖) +
ℎ

6
(𝑘1 +  2𝑘2 +  2𝑘3 +  𝑘4) 

7. Apply Milne’s Predictor-Corrector method: for each i from 4 to the last point: 

a. Predictor Step: Use Milne’s formula to predict the value of 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟. 

 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 = 𝑦(𝑖 − 3) +
4ℎ

3
[2𝑓(𝑥(𝑖 − 2), 𝑦(𝑖 − 2)) − 𝑓(𝑥(𝑖 − 1), 𝑦(𝑖 − 1)) +

2𝑓(𝑥(𝑖), 𝑦(𝑖))] 

b. Corrector Step: Use Milne’s formula to correct the predicted value and update 

𝑦(𝑖 + 1):  

𝑦(𝑖 + 1) = 𝑦(𝑖 − 1)

+
ℎ

3
[𝑓(𝑥(𝑖 − 1), 𝑦(𝑖 − 1)) + 4𝑓(𝑥(𝑖), 𝑦(𝑖1)) + 𝑓(𝑥(𝑖 + 1), 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟)] 

8. Error Calculation:  

a. Calculate the exact solution at each point  𝑥𝑛 using the exact solution function 𝑦(𝑥) =
−𝑥 − 1 + 2𝑥. 

b. Compute the absolute error at each point as the difference between the exact and 

approximated value:  

𝑒𝑟𝑟𝑜𝑟 = |𝑦𝑒𝑥𝑎𝑐𝑡 − y𝑀𝑖𝑙𝑛𝑒| 
9. Display Results: Output the values of 𝑥,  y𝑀𝑖𝑙𝑛𝑒 , 𝑦𝑒𝑥𝑎𝑐𝑡, 𝑎𝑛𝑑 𝑒𝑟𝑟𝑜𝑟 for each step using 

fprintf. 

Applying each of these algorithms in writing the matlab programming codes for the different 

methods for solving the problem: 𝑦′ = 𝑥 + 𝑦, 𝑦(0) = 1, 0 ≤ 𝑥 ≤ 1, ℎ = 0.1 gives the results as 

presented in Figures 3.1 to 3.8. 
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3. RESULTS 

Fig.3.1 MATLAB Code for Euler’s method

 

Fig. 3.2 Result using Euler’s Method MATLAB Code 

about:blank


 

 

 

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  

P-ISSN 2695-1908, Vol. 11 No. 2 2025 www.iiardjournals.org Online Version 

 

 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 19 

 

Fig.3.3 MATLAB Code for RK4 method 
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Fig. 3.4 Result using RK4 Method MATLAB Code 

 

Fig.3.5 MATLAB Code for Heun’s method 
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Fig. 3.6 Result using Heun’s Method MATLAB Code 
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Fig.3.7 MATLAB Code for Milne’s Predictor-Corrector Method 
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Fig. 3.8 Result using Milne’s Predictor-Corrector Method MATLAB Code 

 

4. CONCLUSION 

This research work was aimed at providing algorithms and MATLAB codes for four numerical 

methods for solving initial value problems (IVPs) in ordinary differential equations (ODEs). We 

focused on Euler’s Method, Runge-Kutta 4th Order (RK4), Heun’s Method, and Milne’s Predictor-

Corrector Method, and provided a step-by-step implementation of these algorithms using 

MATLAB. The results confirmed the significance of these numerical methods in obtaining 

approximate solutions when analytical solutions are not feasible. The work demonstrates 

MATLAB's potential as a versatile tool for implementing numerical methods, making it accessible 

to students and researchers seeking practical solutions in computational mathematics. 

5. RECOMMENDATION 

1. Compare MATLAB implementations with built-in MATLAB solvers (e.g., ode45, ode23) or 

solvers in other programming languages like Python or R. 

2. This work can be extended for other numerical methods. 

3. Future studies could consider error estimation and convergence behavior of these numerical 

methods to provide a more comprehensive understanding of their accuracy. 
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